Charge detection mass spectrometry of bacteriophage P22 procapsid distributions above 20 MDa.

نویسندگان

  • David Z Keifer
  • Elizabeth E Pierson
  • Joanna A Hogan
  • Gregory J Bedwell
  • Peter E Prevelige
  • Martin F Jarrold
چکیده

RATIONALE Charge state resolution is required to determine the masses of ions in electrospray mass spectrometry, a feat which becomes increasingly difficult as the mass increases. Charge detection mass spectrometry (CDMS) circumvents this limitation by simultaneously measuring the charge and the m/z of individual ions. In this work, we have used electrospray CDMS to determine the number of scaffolding proteins associated with bacteriophage P22 procapsids. METHODS P22 procapsids containing a native cargo of scaffolding protein were assembled in E. coli and purified via differential centrifugation. Electrospray CDMS was used to measure their mass distribution. RESULTS The procapsid peak was centered at 23.60 MDa, which indicates that they contain an average of ~112 scaffolding proteins. The distribution is relatively narrow, less than 31 scaffolding proteins wide. In addition, a peak at 19.84 MDa with a relative abundance of ~15% is attributed to empty capsids. Despite having the same sizes in solution, the empty capsid and the procapsid have significantly different average charges. CONCLUSIONS The detection of empty capsids is unexpected and the process that leads to them is unknown. The average charge on the empty capsids is significantly lower than expected from the charge residue model, which probably indicates that the empty capsids have contracted in the gas phase. The scaffolding protein presumably limits the contraction of the procapsids. This work shows that electrospray CDMS can provide valuable information for masses greater than 20 MDa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acquiring Structural Information on Virus Particles with Charge Detection Mass Spectrometry.

Charge detection mass spectrometry (CDMS) is a single-molecule technique particularly well-suited to measuring the mass and charge distributions of heterogeneous, MDa-sized ions. In this work, CDMS has been used to analyze the assembly products of two coat protein variants of bacteriophage P22. The assembly products show broad mass distributions extending from 5 to 15 MDa for A285Y and 5 to 25 ...

متن کامل

Bacteriophage P22 in vitro DNA packaging monitored by agarose gel electrophoresis: rate of DNA entry into capsids.

Bacteriophage P22, like other double-stranded DNA bacteriophages, packages DNA in a preassembled, DNA-free procapsid. The P22 procapsid and P22 bacteriophage have been electrophoretically characterized; the procapsid has a negative average electrical surface charge density (sigma) higher in magnitude than the negative sigma of the mature bacteriophage. Dextrans, sucrose, and maltose were shown ...

متن کامل

Measurement of the accurate mass of a 50 MDa infectious virus.

RATIONALE Bacteriophage P22 is believed to contain a total of 521 copies of 9 different proteins and a 41,724 base pair genome. Despite its enormous size and complexity, phage P22 can be electrosprayed, and it remains intact in ultra-high vacuum where its molar mass distribution has been measured. METHODS Phage P22 virions were generated by complementation in Salmonella enterica and purified....

متن کامل

Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22.

The first step in assembly of the bacteriophage P22 is the formation of a T=7 icosahedral "procapsid," the major components of which are the coat protein and an inner core composed of the scaffolding protein. Although not present in the mature virion, the scaffolding protein is required for procapsid assembly. Eleven amino-acid residues at the extreme carboxyl terminus of the scaffolding protei...

متن کامل

Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein.

UNLABELLED Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rapid communications in mass spectrometry : RCM

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2014